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Abstract

In this paper, we propose a method to recover simultaneously the shape and wavenumber of an object
from noisy radar or sonar measurements. The physical problem is modeled in a bounded domain with the
Helmholtz equation and appropriate transmission conditions. The approach relies on a Kohn—Vogelius
formulation of the inverse problem and uses Nesterov’s accelerated gradient descent combined with shape
optimization techniques. To address the robustness of the method with respect to measurement noise,
we are looking to minimize a convex combination of the expected value and variance, which we achieve
by using a Karhunen—Loéve expansion. The effectiveness of the approach is demonstrated through two-
dimensional numerical experiments.

Keywords: inverse problems, shape optimization, Helmholtz equation, noisy data, inverse scattering prob-
lem

AMS Classification: 35R30, 35J05, 49Q10

1 Introduction

1.1 Motivations

The inverse scattering problem [I0] consists in retrieving the physical and parametric properties of an object
from radar or sonar measurements. This problem is of major interest in numerous applications, including
defense, non-destructive testing, health monitoring, and geoscience. For a general mathematical background
on this problem, we refer to the works of Colton and Kress [13, [10] 14! [§].

This work is situated within this context, with the objective of detecting and reconstructing both the shape
and the wavenumber of an unknown object from radar measurements while accounting for uncertainties. We
expect this strategy to overcome the problem of ill-posedness of retrieving the wavenumber alone [13| [10].
Here, as usual, we consider the case of monochromatic incident waves and thus deal with the Helmholtz
equation, with Robin boundary condition. This outer boundary condition models the Sommerfeld one on a
bounded domain. Finally, since we are interested in reconstructing the shape of the target and its wavenum-
ber, the governing equations involve transmission conditions on the unknown interface between the object
and the exterior environment. Our transmission condition models a situation in which the dielectric permit-
tivity € of the object differs from that of the surrounding medium.
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The adopted strategy is the minimization of an objective functional of Kohn-Vogelius type using Nesterov’s
accelerated gradient descent. From a numerical point of view, we parameterize the shape by a truncated
Fourier series. This allows us to work naturally in a finite-dimensional space. Our methodology thus relies
on tools from shape optimization, presented in the books of Allaire [2], and Henrot and Pierre [24].

Previous studies have considered the shape reconstruction for a similar problem. We can highlight the
work [26] where an exterior Sommerfeld radiation condition is employed. As previously mentioned, we
approximate this condition by the Robin condition. This specific choice allows us to efficiently solve the un-
derlying equations using a finite element method. A further key difference is that they, along with many other
authors (e.g., [19, B]), employ level-set methods, that allow one to consider topological change. However,
this does not address the ill-posedness of the inverse scattering problem while our parametrization addresses
this issue naturally. Finally, we highlight that they do not consider the reconstruction of the wavenumber.

On the other hand, another strand of the literature consider the case of directly retrieving the dielectric pa-
rameters of the target. For instance, some relevant works include linear sampling method (see, e.g., [7, @l 15]).
Indeed, this problem has been shown to be very ill-posed and the methods are mostly based on a linearization
of the integral equation in order to inverse the system an retrieve the wavenumber of the object, and in the
same time its shape. Nonetheless, this method are still limited and the result highly depend on the contrast
between the target and the surrounding domain.

Here, we do not consider thin-layers, but in another context, the transmission condition can be replaced
by modeling it through a Ventcel-type condition [25] [6]. Various studies have investigated the simultaneous
reconstruction of the thickness and the impedance condition of the unknown object as [5]. Those analysis
does not incorporate data uncertainties into the reconstruction model. Also, we can remark that in [5], the
authors prove the following identifiability result: the solution to the inverse problem is unique assuming that
any directions of observations and scattering are known. This question, while very important, will not be
considered in the present work.

The use of the Kohn-Vogelius functional has previously been considered in other physical problems, see [11]
16, M2]. Indeed, this approach has shown to be better than the conventional least-square one, even for a
simple inverse scattering case where homogeneous Dirichlet condition is considered for the target bound-
ary [4]. In particular, in [16] they introduced a Karhunen-Loéve expansion to handle uncertainties in the
measurements, which we similarly employ in the present study. The authors also seek to reconstruct an
object using shape optimization. However, their work is set within the framework of obstacle reconstruction
with Poisson equation.

This paper is organized as follows. Section 2] presents the equations under study and the main results we
obtained. We introduce a Kohn-Vogelius, which is specifically constructed so that its minimizers coincide
with the solutions of the inverse problem. We prove the existence and give the expressions of the deriva-
tives for both the deterministic case and the case with uncertainties. In the latter case, we develop the
Karhunen—Loéve expansion that permits us to replace the cost functional by moments of order 1 and 2
of the deterministic Kohn-Vogelius functional. Section [3]is devoted to illustrate our method by numerical
experiments. In particular, we highlight the advantages of the robust approach. In these experiments, the
objects are represented by truncated Fourier expansions and we minimize the cost functional, thanks to a
Nesterov descent scheme. Section (] shows that the equations considered are well-posed and addresses the
proofs of the principal results.

1.2 Notations and setting of the inverse problem

Notations. As previously mentioned, in this paper, we focus on an inverse scattering problem. In par-
ticular, even if the work is general, we use the notation of electromagnetic. The situation can be stated
quite simply: we want to detect and reconstruct an unknown obstacle O (which could be, for instance, a
tumor or an airplane), assumed to be included in a domain D, and its wavenumber, from electromagnetic
measurements.



We study the harmonic case, and thus assume an exp(—i2x ft)-time variation where f is the frequency,
inducing the exp(ikr) space variations. In all the following, D denotes a bounded domain, i.e. a connected
open subset of R? (d = 2,3) with Lipschitz boundary. To detect the object O, we send planar waves on
this object and we measure a signal u.ps via some sensors (such as antennas) on part of the boudary of D
here denoted by I'y,. The boundary I'. denotes the part of the boundary that is not covered by the sensors.
Hence, we have 0D = I';;, UT'.. Both parts are not necessarily connected. The Robin condition is imposed
on 0D. The wave sent corresponds to the incident wave ;. and the wave that comes back to us is the sum
of the scattered wave us and ui,c, that is u = uine + us. Hence, we know u;y,. everywhere and we also know
the sum v = uops = Uine + us on the sensors I'y,. For a schematic representation of the inverse scattering

problem, one can refer to Figure [I}

Figure 1: An example of scattering inverse problem.

In the following, we will consider the following set of admissible shapes O:
Unam = {O C D; O is closed with Lipschitz boundary and such that D\ O is connected} .

We also assume that the wavenumber is constant in both O and D C O. From now on, we write O; the
unknown and Oy = D\ O; such that the wavenumber on O, is written k;, j = 1,2. Notice that k; is then
unknown and ko is known. In the following, we assume that

jm(kg) >0
and we will consider the following set of admissible wavenumber R.qm:
Radm = {k1 € C; Re(k1)Re(ke) > 0 and Im(ky) > 0}.

The conditions on the imaginary parts of the wavenumbers are in line with the convention we choose for the
time-variation. It shall also be noted that this also ensure the condition on the real part of k; and ks since
they will be of same sign. In the other case, both imaginary parts are negative provided that we also change
the sign of the term —iku in the Robin condition.

Setting of the inverse problem. The inverse problem can then be stated as follows: we aim to find an
admissible shape O1 € Uaqm, an admissible wavenumber k; € K.qm and u € V such that

Auj + kfu =0 in O;
8HUQ — iszg =h on 8D
U2 = Uobs on Fm

[u] = [Oqu] =0 on 00,



where h € H=Y/2(9D) and ugps € HY/?(Ty,) are given and V = {u € H(D) such that [u] = 0 on 9O, }. Here
and in all the following, for each quantity o; defined on a subdomain O;, we denote by [0] = 01 — 05 the jump
of 0 on 00;. In order to simplify the notations, in the following, we also denote by x; the characteristic
function of ©O; and omitting the subscript implies that we consider the sum o0 = 101+ x202. As an important
example, k denotes the sum x1k1 + x2ke and we can write

Au+k*u=0 inD.

Remark 1.1
We underline that, using the Robin boundary condition on 0D, both Dirichlet uops and Neumann Opuobs
conditions are known on I'y,.

2 Main results

In this section, we define the Kohn-Vogelius functional used in this work and state the main theoretical
results of this work. First, we calculate its derivative with respect to its two unknowns, that are O and k.
Then, we give a method that takes into account noise on the input data, i.e., the robust method. The general
forward problem we aim to solve can be stated as finding functions u; € H'(O;) such that

Au+k?u = 0 in D
Ohu —ikou = h on I,
U = TUobs on I'y, (T(Ol))
[u] = 0 on 00,
[Ohu] = ¢ on 001,

where g € H-Y/2(00,),h € H-Y2(T'.) and ueps € H/?(I',). The potential errors and uncertainties will
occur on the functions h and ugps.

Remark 2.1
A wvery peculiar case is when 'y, is empty and g = 0. This means that we do not consider any sensors and
a transmission condition [Oyu] = 0, in other words it corresponds to the physical forward case.

The homogeneous forward problem (with uops = 0) [7(O; )| writes under variational form as finding v € V

such that
/ (Vu-V@—kQui)—ikg/ u@z/ h@—k/ gv forallveV,
D oD oD 80,

where the notation 7 denotes the complex conjugate of v. Note that since our functions are complex-valued,
the scalar product we consider is hermitian.

Proposition 2.2

Under the assumptions above, the transmission problem (T (01)) is well-posed.

Concerning the above inverse problem, we now reformulate it as an optimization problem. We introduce the
Kohn-Vogelius (also used in other example as in [I1]) functional as follows

K(O1, k1) = %/D |V (up — ugr)|?, (2.1)
where up = up(O1,k1) € V and ur = ur(O1, k1) € V are the unique solutions to the problems
Aup +‘k2uD = 0 in D Aug +k>ug = 0 inD
Onup — ZkQZD i Z 22 EC Opur —tkour = h on 9D (2.2)
[up] = [anu]f] ; 0OIDS on 881, [ug] = [Bvur] = 0 ondO:.

The cost functional K has two parameters O; and k; that correspond to our two unknowns. By the proposi-
tion above, the equations defining up and ug are well posed. We see that the solutions to the inverse problem
minimize the functional as they are zeros of L. However, we do not know if all minimizers are solutions



to the inverse problem. This question is related to the identifiability of the problem: is knowing h and g
enough to determine Oy and k1 ? If we consider another problem, such as the perfectly electric conductor
(PEC), i.e. w =0 on 00y, the identifiability can be proved adapting the property 4.4 of [I7]. In the context
of thin-layer and reconstructing the impedance, Bourgeois et al. showed in [5] that identifiability holds in
the case where all observation and scattering directions are known.

In the following, we aim to use an iterative Nesterov scheme (see section 4 for more details) to minimize
the previous functional. To do so, we need to compute a gradient at each iteration with respect to both
the shape O; and the wavenumber k;. To calculate the shape gradient, we use the classical notion of shape
derivative, that we briefly recall here (see [24]).

Definition 2.3 (Shape derivative)

Let J : Dygm — R be a functional defined on a class of admissibles shapes Dygm. Let W be a functional
subspace of W1°(R?) and denote the identity R? — R by I. The shape derivative of J at O is the Fréchet
derivative of

W —-R
00— J((I+6)(0))

if it exists. It will be denoted in the following by Do, J(O)(0).

In this article, the functional subspace W wused in the proof is Wol’oo(D). It is the subspace of W (R%),
made of functions with traces that vanish on 0D.

2.1 Deterministic case

We begin by giving the expression of the derivatives of I with respect to both the wavenumber k; and the
shape O; in the deterministic case.

Proposition 2.4 (Derivative with respect to O;)
Let k1 € Raam- For every O € Uaqm, and 6 € Wé’oo(D), the shape derivative of the Kohn-Vogelius functional
can be expressed as follows

Do, (01 hn)(0) =9 [0 = 1) (unpo — unpr)(6-1)).

01

where pp € V and pr € V' are solutions to the adjoint equations

App + k? = —k%*(up —ugr) nD Dy — .
P R S R A e I
! o = On onFC Onpr —ikpr = 8n(uD_UzR) on 0D
o] = [Bupp] = 0 on 90, lpr] = [Oupr] =0 on 90, .
(2.3)

Proposition 2.5 (Derivative with respect to k)
Let O1 € Upam- For every ki € Raam, the derivative of the Kohn-Vogelius functional (2.1)) with respect to k;
erists and

OK (01, k1)

p— 2 —_—
s /OI(PDUD PRUR)K1,

where up € V and ug € V are defined in the equations (2.2) and pp € V and pr € V are solutions to the
previous equations (2.3)).

2.2 Case with uncertainties

The method detailed above is considered under ideal conditions, i.e., a deterministic case where the quanti-
ties uops and h are known with precision. In practice, however, this is not the case. Two factors compromise



the effectiveness of our approach. First, there is a noise on wps which arise from measurements. Second, h
depends on the incident wave vector that may deviate from our exact expectations.

In order to take into account those uncertainties, we consider a stochastic framework where we assume that
the errors follow a statistical law. Precisely, we let (Q,7,P) be a probability space, h € L2(Q, H~/2(9D))
and uops € L2(1, H'Y2(T,)). For a given w € Q, the inverse problem in the first strategy can be rewritten
as finding 01 € Undm, k1 € Kaam and u(w) € V such that

Au(w) + ku(w) = in D
Ohu(w) — iku(w) = ( ) ondD
u(w) = Uohs(w) on I'y,
[u(w)] = [Ohu(w)] = on 00;.

In practice, the main difficulty lies in the fact that we know only the realizations of the random variables upg
and h. There are many ways to solve the problem with uncertainties. We could use a Monte-Carlo method
or a stochastic gradient descent, but it would lead to very long computation time. To overcome this problem,
we choose to minimize a combination of the expected value and the variance of the considered functional I,
that is to say we are considering

K(O1, k1,w) = (1 — )E(K(O1, k1,w)) + aV(K(O1, k1, w)),

for a € [0,1]. Hence, the problem is reduced to a purely deterministic problem which can be treated as
before. For this purpose, we rely on a truncated Karhunen-Loéve expansion (see [21] [I6] for more details).
Let M > 0 be an integer, Y be a centered and normalized random variable with all the moments of order
lower than 4 finite. We consider M independent and identically distributed random variables Y; ~ Y,
(gm)lgmgk[ S H1/2(Fm) and (hm)lgmgjy[ € H71/2(Fm) such that

M
Uobs(Z,w) = go(x) + Z Im ()Y ( and h(z,w) = ho(z) + Z b (2) Yo (w). (2.4)
m=1

By linearity of the Helmholtz equation, we get

ur(w) = uR, + Z UR,, Y and up(w) = up, + Z up,, Y;

where up,, € V and ugr,, € V solve for all 0 <m < M,

Aup,, + k*up,, =0 in D
Onup,, — itkup,, = hy,  on I
UD,, = gm on 'y,
[up,,] = [Owup,,] =0 on 001,

Aug,, + k*ug,, =0 inD
Owur,, — ikur, = h, on dD
[ur,,] = [Onur,,] =0  on 00;.

m

We can compute E(K(O1, k1,w)) and V(K(O1, k1,w)) in any cases, but we will consider the case Y ~ N (0, 1)
to simplify the expressions of the variance in the following.

Proposition 2.6 (Expression of the expected value of the functional)
In the framework described above, we have

Ex(O1, k1) = E(K(O1, by, w) /Z‘V up, —un,,)P*

m=0

For 0 € Wé’w(Rd), 01 € Upam and k1 € Raam, the derivatives given by the adjoint exist and are given by

Do, &k (01, k1)( Z Re (/ — k3)(up,, pp,, — UR,, PR, )(0- H)) ;
00,



Ok (01, k1)
KTT*QZ/ PD,, UD,, — PR, UR,, K1, (2.5)

where pp, €V and pr, €V solve, for all1 <m < M,

-2,
A k2 =—k — in D -
P K D, (up,, —uR,) in Apr,, + k2pr,, = —F (up,, —um,) inD

Oupy tho = Ol ) on Ouprs — ihiprn = (D, —Tm,)  onOD
[Pr;n ] = [Oupp,,] =0 on 8%1 [PRon] = [Onpr.,] =0 on 901,

Proposition 2.7 (Expression of the variance of the functional)
We introduce the notation d; = ur, — up, and p;; = Up,pp; — UR,PR;- Let O1 € Uadm, k1 € Radm- In the
framework described above, if Y ~ N(0,1), we have

Vic(01, k1) = V(K(O1, k1,w)) = i (/D |Vd0|2) (/ |Vd0|2> (m,zl/ |Vdm|2>

+mzl (/ Re (Vdo - Vd,, )) +Re | > (/DVdidl> + </ Vdm|2) . (2:6)

1<m<I<M m=1

For 0 € Wé’oo(D), the derivatives given by the adjoint method are now

Do, Vi (01, k1)) (6) = Re (/8 WeOnk) _o [ g

(k3 —k3)G(6 - n)) and O o

O1

where

g=;</ |Vd02>mzlpmm+2z (/ Re (Vd, - Vd )>p0m
+4 Re (/ Vd,, le> pml-l-z (/D|Vdm|2> P (2.7)

1<m<l<M

3 Numerical experiments

To illustrate the effectiveness of our approach, we present numerical experiments in 2D.

3.1 Algorithm

To ensure visibility of the unknown target, we consider different incidents directions 6; for 1 < j < J. For
each direction, we take
B = ik — Ky (0) - m)usgexp(—ik. (6) - 1),

mc mc

where k! _ corresponds to the incident wave vector given by k? = —k(cos(6;),sin(6;)). It is important to
note that we have in total J functionals rather than a single one. We chose to minimize each functional
successively over a given number of iterations. Our method consists of a sequential process: we begin
by minimizing with respect to the first direction of the plane wave, then the second, and so on, until all
directions have been considered. This cycle is then repeated, starting again with the first direction. The

descent method used in the following is the Nesterov’s accelerated gradient scheme [27]:
Tnt1 = Yn — 701 k1 V (Yn)
ne — 1

Nt+1

14+ /1 + 40} o= 1
2 ) )

Yn+1 = Tp+41 + (xn—&-l - xn) s Yo = To

Nt+1 =



with restarting [28]: if K(zp41) > K(zy,), we take ng =1, g = xn, yo = x,. The variables in the algorithm
(e.g. =, and y,) are vectors of size 2 of the form [O1, k1] and the step time 7 is 70, x, = [To,, Tk, |- Hence,
both shape and parameters are updated at each iteration at the same time, with their own gradient and step 7.

The choice of the two descents step is a key point of our algorithm. If the step size are too large, the process
becomes unstable, potentially leading to divergence or even failure to converge at all. On the other hand, if
the step sizes are too small, the reconstruction becomes excessively slow.

In addition, we consider a truncated Fourier series parametrization for the boundary of the object O;:

N
00, = Bj + (r + X:Iancos(nﬁ) + bnsin(n9)> {Z?E((g))} :
n—

To avoid the instability of the inverse problem, the Fourier coefficients are introduced incrementally. The
first five iterations are used to adjust the center. The radius is introduced after this fifth iteration, and
each subsequent Fourier coefficient is added at multiples of 30 iterations. Hence, the more iterations we do,
the bigger is the number of Fourier coefficients we accumulate by the end of our algorithm. Note that we
could also choose to add them following a criterion, such as adding some coefficients if the functional is not
changing over a certain number of iterations. Nonetheless, the goal here is to validate the method. The
general idea of the proposed scheme is summed up in the pseudo-code

Algorithm 1 Descent algorithm

ReqUire: Niter7 Nseq; einc
for 0 < n < Niter do
for 0; € i do
Nesterov scheme with Nqq iterations and the functional K
end for
end for

3.2 Implementation

We conduct numerical experiments to assess the effectiveness of the different methods developed earlier in
section 2] We use the PDE solver FreeFEM++ (see [23]) and the package pyfreefem (see [22]) to interface
with Python. The FreeFEM++ version we use is parallelized using the MPI library. The resolution of the
inverse problem requires a high-performance computing (HPC) cluster, specifically Pyrene developed at the
Université de Pau. The forward problem is first modeled using P2 finite elements on a highly refined mesh.
The solution is then computed on a new mesh with P1 finite elements to avoid the inverse crime problem.

We use the parallelization for the robust case only. It is implemented as a process distribution, where each
process corresponds to a term in the Karhunen—Loéve expansion . Thanks to this method, we were
able to increase the order of the expansion while maintaining approximately the same computation time.
With 5 terms in the expansion, each iteration requires approximately 60s.

3.3 Results

In all the experiences below, we consider a general domain D, which is modeled as a disk of radius 1. We
consider four incident waves coming from directions 6; = 0, 5, 7 and 37”, with each having the same amplitude
of 1 and the same frequency f = 1 MHz. The space of measures I'},, is constituted of six uniformly distributed
intervals on the boundary of D. In the following, our main objective is to reconstruct a shape that does not
enter into our Fourier parametrizations. We will name it the "kite" and it can be parameterized by

m _ [0.3 cos(ot')4 ;LI r(l)é)cos(%)



For the object we consider a wavenumber, ki, associated to a permittivity e = 50 4+ 295. The outside
permittivity is taken ¢ = 10 + 45. The initial guess for the shape is a disk with a radius of 0.6. The descent
is performed with a total of 400 iterations, with Nie, = 4 descent directions, Ns.q = 25 sequential step per
direction, and a step size of 0.02.

3.3.1 Deterministic reconstruction

Deterministic reconstruction of the shape at fixed wavenumber. First, we aim to reconstruct the
shape assuming that we know the wavenumber. Hence, we take ki as the initial wavenumber and attempt
to reconstruct the kite shape. The results, depicted in Figure [2| show the final retrieved shape (orange,
dashed) closely approximately the true kite geometry (plain). In Figure [2l we also represent the evolution
of the functional. The initial shape is represented in dotted. All the figures represented will have the same
convention.

100 — True shape
L4 Nesterov determinist
—— Initial shape

100

-1.0

0 20 40 60 80 100 120 -1.0 -0.5 0.0 0.5 1.0

(a) Evolution of the functional (b) Retrieved shape

Figure 2: Reconstruction of the shape at fixed wavenumber

The objective functional does not decrease monotonically. Indeed, the functional we minimize along the
descent depends on the incident direction. Hence, we can observe some jumps in the functional decrease.
They correspond to the changes of initial direction. Moreover, the difference between the total number of
iterations (400) and the number of points plotted is due to the removal of certain iterations at restart points
within the algorithm. Nevertheless, we can see that the functional decreases globally and converges to 0
with the number of iterations. All the other experiments have a similar behaviour for the functional.

Determinist reconstruction of the wavenumber at fixed shape. We also attempted to reconstruct
the wavenumber k; using the unknown as the initial shape. Initially, we set the shape update step 7o,
to 0, so that the algorithm is a Nesterov descent on the parameter k£ only. In this experience only, the
objective shape is the initial shape: the disk of radius 0.6. Also, we have chosen Nj, = 1. However, this
intuitive approach failed. We observed that the functional J is extremely sensitive to the unknown shape
(we refer to [I8] Section 4.3] where this observation was done in another context). Indeed retrieving the
permittivity is a very ill-posed inverse problem in general. In particular, in our setting, i.e., the size of
the object of around A/300, we are in the Rayleigh diffraction zone where the scattering waves variations
are dominated by the area of the target. Therefore, this sensitivity suggests that even very small shape
variations of the shape (for instance, those introduced by copying the shape to a new mesh) result in large



variations in J. Our solution was to consider a very small step for the shape update (0.0001) compared to
the wavenumber update (0.4). This strategy keeps the shape very close to the true one. We tested this with
two initial wavenumbers: 0.9%; and 1.2k;. All the other parameters remain the same. In Figure [3| we plot
the evolution of the real and imaginary parts of the wavenumber during the reconstruction.
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Figure 3: Reconstruction of the wavenumber at fixed shape

We can notice that the results are very accurate in both cases, even if no regularization is performed. Further-
more, this highlight the importance of the proposed dual strategy, i.e., incorporating the shape reconstruction,
for the inverse scattering problem. It shall also be noted that obstacle detection and reconstruction at low
frequency is of interest for the electromagnetic community [29].

3.3.2 Reconstruction with uncertainties:

Simultaneous reconstruction with uncertainties and the expected value: We now attempt the
simultaneous reconstruction of both the shape and the parameter with noisy data. To do so, hg is assumed
to be the deterministic data, with gg being the associated observation uons. Then, we consider g,, and h,,
of the following forms:

Gm = Bgsin(me) and  h,, = Busin(kd)i(k — k? (6;) - n)exp(—ikl .(0;) - ),
where (¢,r) are the usual polar coordinates.
We first consider the minimization of the expected value only. We investigate one case with 5% of noise on g
and 1% on h, and conversely 1% of noise on g and 5% on h, see 5| By "percentage of noise," we refer to the

noise level relative to the squared of the L2-norm on the boundary. Thus, By and B, were chosen to match
these expected noise percentages. As an example, 5% of noise on g and 1% on h correspond to

g1+ 92 + 93+ g4}
&%2:%E<Hl 2T ””““)

H90| ‘%Z(ap)

and

2
wﬁ:&ECm+m+m+mumm>

Az o)

In Figure [ we represent the final shape and the evolution of the wavenumber for both experiments.
With these levels of noise, we see that the method is able to retrieve both shape and wavenumber and remain
robust under uncertainties.

Simultaneous reconstruction with uncertainties by minimization of the expected value and
variance: Lastly, we put 3% of errors on both h and ¢ and consider 3 different combinations of expected
value and variance. Hence, the functional considered is

j = (1 — a)é‘;c((’)l,kl) + OLV)C(Ol,k'l).

10
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Figure 4: Simultaneous reconstruction with noisy data and minimization of the expected value.
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In Figure [5] we represent the final shape for the three values of . In Figure [6] we represent the evolution
of the real parts of the wavenumber for the three experiments.

100 —
.

shape
Nesterov with expected value
Initial shape.

(a) =0 (b) «=10.25 (¢) a=0.5

Figure 5: Simultaneous reconstruction with noisy data and a linear combination of the wavenumber and
variance
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— Relkp), var = 0.25
Re(kp), var = 0.5

2.751 ¥ —-—- Re(k) final: 4.61

T T T T T T T
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Figure 6: Simultaneous reconstruction of the wavenumber with noisy data and a linear combination of the
wavenumber and variance

We observe that increasing the value of a smooths the reconstructed shape, leading to a slightly worse
reconstruction. On the other hand, the wavenumber becomes more stable with increasing variance. This
tests show that the variance act as a regularizer for the robust approach and thus the choice of a good « is
critical.

4 Proofs
In this section, we provide the proofs of the propositions stated above.

4.1 Proof of the well-posedness of the problem (7 (O;)

We present the proof in the particular case where g = 0 and T'y, is empty, which corresponds to the forward
physical equation with Robin boundary conditions only. The results, however, remain valid in full generality,
up to a modification of the linear form [ in the proof. Hence, all the problems considered in this paper are
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well-defined including the adjoint problems. We remind first two results of elliptic PDEs used in the following
proof.

Theorem 4.1 (Banach-Ne&as-Babuska Theorem (BNB), [20, Theorem 25.9])
Let V' be a Banach space, W be a reflexive Banach space and a € L(V x W,C). The following items are
equivalent:

1. For anyl € W', there exists a unique u € V' such that

a(u,w) =l(w), for allw e W.

2. There exists B > 0 such that infvevsupwewa(v’w) = and (Vv € V,a(v,w) =0= (w =0)).

llwllw
3. There exists (1, B2 > 0 such that infvevsupwewm =31 and infwewsupvevm = fs.

We also have a lemma that provides a sufficient condition for applying the BNB:

Lemma 4.2 (Garding’s lemma, [20, Lemma 35.3])
Let V — L be two Banach spaces with compact embedding. Let a : V x V — C be a bounded sesquilinear
form. Assume that there exist two real numbers B,~v > 0 such that the following holds:

1. a(v,v)| + BllvlIE = Allvl[}, Yo €V
2. [a(v,w) =0,Yw € V] = (v=0).
Then the second condition of the BNB Theorem is satisfied.

Proof of the well-posedness of the problem [T (O1). To prove this we make use of the Lemma and thus
prove its two points.

1. Let us denote A(u,v) = [, VuVT — k*ut — iky [, uv and consider Re(A(u, —ikau)).
Re(A(u, —ikau))
= %e (i [RallVul e 0,) + Fal VullE o) — KiRallullEzo,) — KRallullEa(o, | + ol ulf o))
= Im(E Rl 2 0, + Im(k2) [Vl + [kt Eagony ] + Ral?l 0l Eagomy.
Hence, with the definition of Kaqm,
RallA(u, )| + IR [0l 2 0,y = Im(ka) [[1VullEap) + 2wl B2 o) | + ke 2l ullE op)
and we get the first point of the Garding’s lemma.
2. For the second point, assume that A(u,v) = 0 for every v € V. Hence,

Im(A(u,u)) = —Re(ka) (|[ullLz o)) + 2Tm(ka)|lullz(o,)) — 2Re(ki)Im(k)||ullL2(o,) = 0

and, since Jm(k;) > 0 and the real parts Re(k;) and Re(ks) have the same sign, we obtain |[u|r2p) =
0. By the Robin condition d,u = 0 on 9D and wu is solution of the Cauchy problem for the Helmholtz
equation in @3. The jump condition on dO; shows that u is also solution of the Cauchy problem for
the Helmholtz equation in O; and that v =0 in D. O
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4.2 Reminder on shape optimization
First, we remind two important lemmas that are necessary for the following proof.

Lemma 4.3
Let J : Dagm — R be a functional defined on a class of admissible shapes Dygp,- Let 6 € W(l)’oo(D) and
feLYRY). If J(Op) = fOe f(0), then

JKDWFiLf%0+8OKGML

where f'(z) denotes the Fréchet derivative of the map 6 — f(xz + 6(x)).

Proof. This is the result [24, corollary 5.2.8] from the book of Henrot and Pierre applied with ®(x)
(I +t(x)).

o

Lemma 4.4 (Lemma 5.3.3 [24])

Let ¢ : WHe(RY) — WLo(RY) continuous at 0 with ¢¥(0) = I and g : WH®(RY) — WLP(RY), with
1 <p<+oo. If 0+ (9(6),(0)) € LP(R?) x L>=(R?) is differentiable at 0 with g'(0) continuous, then the
application

G: 0 Who(RY) — g(h) o () € LP(RY)

is differentiable at 0 and
G'(0)¢ = ¢'(0)€ + Vg(0) - ' (0)¢.

4.3 Proofs concerning the deterministic case

The proof of the proposition 2:4]is divided into two steps. First, we classically differentiate the functional K
using the technical lemmas recalled in the last subsection. We obtain an expression which is not satisfactory
from a numerical point of view. Indeed, in order to apply a Nesterov descent scheme, we need to efficiently
compute a clear direction of descent. Thus, the second step of the proof consists in introducing adjoints in
order to establish the proposition [2:4]

Lemma 4.5
For every O admissible, and 0 € Wé’OO(D) the shape derivative of the functional (2.1) exists and

I%KWMM®=W(AW%—%%Ww—WO, (4.1)

where uy € HY(D) and uf, € H'(D) are solutions to

Auf +k?uly = 0 in D Aui,) + k_:2u§3 =0 mD
0 ug — z'ku}DL =0 on 0D Onup —ikup - =0 onle
n¥R /R ’U,i:) = 0 on Frn
ug] =0 s s on 00, Wp] = 0 on 00,
7 _ . . Dl =
Onug) = (ki = kaJur(6-n)  on 5O, Onth] = (K2 —K)up(6-n) on 8O,

The proof of this lemma is similar to the one proposed by Afraites and Dambrine in [I, Theorem 3.1] for a
different problem. However, our weak formulation differs and we have to proceed differently for the steps 2
and 3 of their proof. The main difference to the proof of Afraites and Dambrine is that w(tf)_u does not
belong to the space V' and we cannot demonstrate its weak convergence as they do. Therefore, we directly
prove that it converges strongly to a chosen quantity.
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Proof of the lemma[f.3 Fix O € Unam and § € Wy ™ (D). We denote by up () and ug(f) the solutions to
the problems with O; = (I 4+ 6)(O). We only need to prove that 6§ — ur(6) and 6 — up(#) have
shape derivatives. The two computations being very similar, we will do this work for ug only. To lighten the
notations, we denote ug = ug (6). We can notice that for every § € W™ (D), the functions ug are in Hp, (D).
To study the derivation of the application 6 — ug, we consider the application w(t) = ug o (I + tf) defined
on the space Hy, (D), which does not depend on the choice of 6.

w(t)—u
t

If w has a derivative @, then we should have that goes to . This remark gives us a candidate for the

variational formulation that should be satisfied by . We will use that formulation to show that W ef-
fectively goes to 1 and then compute the equation satisfied by the shape derivative «’ thanks to the lemma 4.4

By a change of variable w(t) is solution of the weak problem
/ (A(t)VwVy — J(t)k*wd) — ikg/ wo = hv, YveV
D oD oD

where J(t) = det(I +tD0) and A(t) = J(t)(I +tDO)~1(I +tDOT)~1. Subtracting by the variational form
associated to u and dividing by t # 0, we get

/ <A(t)vw(t)vuv1zj(t)k2w(t)uu) —z‘kQ/ m@:/ QVUVWleiJuEVUEV
> t t o 1 » 1 t

The matrix A is usual in shape optimization and satisfies the following properties [I]: A(¢, z) is symmetric
positive, A(0) = I with

A= %A(t) o = div(0) — (DT + DO)
and for ¢ small enough, we have

|11

VX eREXTAG)X > |T (4.2)

Similarly, the quotient % goes to div(f) when t goes to 0 by differentiation of the det application.
Therefore, we let & € V' that satisfies

/ (Vavo — k*av) — iky / Uy = — / AVuVT — k*div(f)ut, Vv eV
D oD D

The function @ is well defined since this is the same variational form than the transmission problem, but
with a different sesqui-linear term on the right. At this stage, we do not know if % is the desired derivative.
w(t)—u

It is merely a candidate function that exists. Denote —=— — 4 by d(t). We are done if we show that d(t)

goes to 0 in H' (D). Subtracting the two last equations, we get

/D A()VA()VT — k2T ()d(£)T — iky [ = /D Kl_tA(t) + A) Vu+ (I - A(t))a] Vo

- /D k? [(1_:@) + div(9)> u+(1— J(t))a} .

We use d(t) as a test function and proceed as in the last proof, by majoring the imaginary part of the left
side by the modulus of the right side. Thus, using similar method than in the sub-section [{.I] we get by the
Cauchy-Schwarz inequality and the continuity of J, for ¢ small enough,

I— At 1-—J(t .
0Bz m) Suss (|2 4] 1= A0+ [ i) + 1= 501 a0l
and
I— At 1-—J(t .
0oy Sk (|72 44| 1= A+ [P i)+ 1= 701 ) 1O oo
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where <4 p denotes being less than or equal to, up to a multiplicative constant that depends only on the
quantities A and B.

Finally, if we come back to the whole expression with d(¢) as a test function, by the property (4.2) of A, we
get

I—A@t)

40 S (|22 + 4] +17- a0+

oo

L0 o) + 11901 IO

so that ||d(t)||g1(py — 0 when t goes to zero. We have just shown that % is the derivative of u. Consider now
the shape derivative v’ = @ — Vu -0 (given by the lemmawith W(@) = (I+60)"! and g(0) = ugo (I +96)).
Adapting the computation of the step 4 of the proof of [I, Theorem 3.8], we first conclude that

/ V(i —Vu-0)Vo = / (Vu'Vo + AVuVD — k*u(f - V1)) .
D D
Using the variational formulation satisfied by 1, we get

/ (Vu'Vo — k*u'D) — ikg/ u'v = / Eu(0-7) + [(Vu-0) + k* (div(0)u + (Vu - 0))] v
D oD D

= / E2u(0 - Vo) + k*div(uf)v
D

= / E2div(ubv).
D

By the Green formula on both O; and Os, we have

/(VU’V@kaU'i)fikz/ u’@:/ k%u@((Q.n)Jr/ kfu@(o.n):/ (k% — k2)uv(6 - n).
D oD 002N01 00, 00,

We recognize the weak formulation of the problem [7 (O;)l By the lemma below, we conclude that shape
derivative exists and has the desired expression. O

Proof of the adjoint method: proposition[2.j} By an integrations by part and the equation satisfied by p we
have:

/ Vup - V(up — ur) = / —(upA(up — uR) +/ upOn (up — UR)
O; O; 9(0;)

= / —up(App + kzpD) +/ upOn (up — UR)
O; 9(0;)

= / Ot pp — Onppup + upOn(up — UR).
9(0;)

Similarly,

/ Vug - V(up — ug) = Ohuppr + R (On(up — UR) — Onpr)-

On 90D, the integrals are null thanks to the adjoint equation. Hence, we just need to compute the quantities

Ip = Onuppp + up (O (up — ur) — Onpp) + / Onuppp + up (O (up — ur) — Oupp)
00, 00>,NO,
and
Tn= [ Ouuhon+ (@l =) ~ Gupr) + | Oy + (00 (in = ) ~ Bup).
00, 00>,N0O4
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By the jump conditions and the identity [ab] = [a]2Fb2 + [b] 21492 we have

Ip = / (k% — k%)quD(é? ‘n) and ZIg = / (k‘f — kzg)uRpR(G -1)
801 8(91

so that

Do, k(1. k0)) = e [ Viuty ~ ) Vi = ) =t [ (4~ 1umpo — unpn)0-m)) .

O

1

To study the derivative with respect to the wavenumber, we proceed in a similar way. First, we compute
a preliminary expression of the derivative. Then, we introduce the adjoint variables pp and pg in order to
prove the proposition [2.5]

Lemma 4.6 (Derivative with respect to k)
For every ki admissible, the derivative of the functional (2.1) with respect to ki exists and

OK (04, k -
St [ S un — ) VT~ ) (4.3
where ufy and up, € HY(D) are solution to
) Aufy + k*ufy = 0 in O
/ 2,1 _ D D 2
Au};{ + kQU/R = 0 Zn Oq Aul + k2! = —2kup in O
Auly + k2, = —2kjup  in O D 1D
RTOTR Ohup —tkupy, = 0 on T¢
Owug —thkug = 0 on 0D u- = 0 onT
R _ D = m
[Onug] = [ug] = 0 on 90, [Ouup) = [up] = 0 on 00;.

Contrary to the proof of proposition we will use the implicit function theorem, that is more convenient
in our case. As before, we will only consider the derivatives of k1 — ug(k1).

Proof. Let us fix an admissible wave-number k; and define the function

. {«: x H'(D) -+ (H'(D))
N\ (Bou) = (v [ VuVo — B2 — ik [ (u+ h)D) .

The application F is C! and is chosen such that F(k,u) = 0 if and only if u is solution to the problem (7 (O;)).
We have

O F (k,ur(k))(u)v = / VuVs — k*ut — zk/ uv.
D oD

This is an isomorphism from H'(D) to (H'(D))’ by well-posedness of the problem (7 (O1)). By the implicit
function theorem, there exists @ : C°(D, C) — H!(D) a C! function defined on a neighborhood of 0 such that
F(k,a(k)) = 0. By well-posedness of the problem (7 (0;)), we have (01, k) = ur(k) and k — ug (k) is C?
on a neighborhood of k. Then, derivating the variational form, we see that uf (k1) satisfy

/ Vup Vo — k*uR v — iky / URT = / 2kiurT, Vv V.
D oD O1

This shows that up satisfy the desired problem. O

The expression of the derivative presented in Lemma [2.5] is sufficient to compute a gradient efficiently.
However, this approach requires us to compute uf; and uf, at each step. A more efficient alternative is to
compute the gradient using the adjoints pp ans pr which have already been calculated. Consequently, the
only additional cost is integrating a function over the domain to obtain the gradient with respect to k.

Proof of [2.5. We decompose the derivative as
OK(O1, k - -
KO, k1) = Re (/ Vub-V(uD—uR)) — Re (/ Vu’R~V(uD—uR)>.
Oky D D
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By integration by parts and the equation satisfied by p we have:

[ v =m0 = [ b= + [ uboun =

oD

:/ —up (App + k*pp) +/ upOn(up — uR)
D oD
f/ pp (Aup + k*up) +/ Onuppp — Onppup + up O (Up — UR)
D oD
= 2/ ppupky +/ Onuppp — Ouppup + up Oy (up — UR).
o, D

Decomposing the boundary as 0D = I'. UT',, we study the integral on each of the three parts. On I'y,
up = pp = 0 and the integral is zero. On T, we write

Onuppp — Onppup + updn(up — ur) = up (Gupp — ikpp — Oupp) + Onuppp = pp(Onup — ikup) =0

so that the integral is also 0. Finally, we get [, Vup, - V(up — ur) = 2 fOl ppupki. Let us consider now the
second term. The first step is exactly the same and we get

/ VUR up — uR) = 2/ PRURK1 —|—/ anuRpR — 8npRuR + uRo"'n( up — UR)
Oy

On 0D, the terms that we integrate become

OnuR PR — Onprupg + uROn(up — ur) = uR (Oupr — ikpr — Onpr) + Onuppr = pr(Onup — ikuy) = 0.

Finally, we get [, Vug - V(up —ur) = 2f01 prurki. Combining the two terms together, and using the
equation satisfied by the derivatives on O, we find

OK(O1, k1)

=92 — k.
s /OI(PDUD PRUR ) K1

4.4 Proofs for the case with uncertainties

Proof of the expression of the expected value of the functional: proposition[2.6, The computation is done through
the Fubini theorem (all the quantities are L? and positive) after developing the term and arranging them to
factor out the powers of Y. Indeed, let us keep in mind that E(Y;) = 0, E(Y;Y;) = 4, ;, EV;Y;Y3Y) =1
when the indices pair up and is equal to E(Y*) if they are all equal. Otherwise, it is 0.

2

E(Ec (01, k1)) VuR — Vaup,, )Y (w)| dzdP(w)

M
:// <Z|Vqu—VuRm|2Ym(w)2
QJD \ o

+ > (Vup, — Vug,) - (Vup,, — VuRm)Yl(w)Ym(w)) dz dP(w)

de. O

/ Z ‘VUDM — VURm

m=0

We recognize the sum of M + 1 terms of the form fD |Vup — Vugr|?. Using the results of the deterministic
case (propositions [4.5| and ., we deduce the desired formula.
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Proof of the expression of the variance of the functional: proposition[2.] We proceed in the same way as in
the previous proof. The expression is more complex, but still entirely computable numerically.

9 2
E (Ec(0,w)?) = i/ﬂ (/D da:) dP(w).

We use Fubini’s theorem and the particular case where Y ~ N(0,1): we use E(Y,,) = 0, E(Y;3) = 0,

E(Y,}) = 3.
E(E;C(O,w)z) = i/ (/ |Vdo|2 + 2Re <Vd0 Z Vd Y, ) + m )

m=1
Zvay)
2

M

> (Vur,, = Vup,,)Ym(w)

m=0

() e () [ (115

Ao S 18
e 3 () (£ o)

+§: (/Dw(wo.vdm)fme (/ vd le)

SE () +d 2 () ()

1<m<I<M

DO |

With the same notations, we have

Ex(O1, k1)? = (Z/ |Vdm2> :imzw_: (/ |Vdm> 1<m - (/ |Vdm2) (/ le|2>

Thus,

V(6 (0, w)) = i (/ Vd0|2) +% </D|Vd0|2) (ﬂi/pwam?)
+Z]\i:(/biﬁe(Vdo~Vdm))2+9‘{e (/ vd le)
S )

m=1

1<m<l<M

First, we denote up, and ug the derivatives of the function O + up,(O1) and Oy + ur,(O1) as computed
in the deterministic case. The expression becomes
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Do,V ((O1,k1)) (0) = ;(/ |Vdo| )Dolg,g((’)l,kl +22 (/ Re (Vdo - Vd, )(/Dme(VdOVd/m))
+2 > e </Dvc1del) Re (/D Vdid§+Vd’del>

1<m<I<M
8 () (5 n)

m=1

Finally, the expression takes the form

Do,V (01, k) 0) =% ([0~ 3)5(6-m).

O1
where
1
=3 (/ Vdo| >mzlpmm+2z (/ Re (Vdy - Vd )) Pom
+4 > E}{e(/ Vd,, le>pml+z </ Vd,n| )pmm
1<m<i<M m=1
We proceed in the same way to derivate with respect to the wavenumber k. O]
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