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Abstract

In this paper, we propose a method to recover simultaneously the shape and wavenumber of an object
from noisy radar or sonar measurements. The physical problem is modeled in a bounded domain with the
Helmholtz equation and appropriate transmission conditions. The approach relies on a Kohn–Vogelius
formulation of the inverse problem and uses Nesterov’s accelerated gradient descent combined with shape
optimization techniques. To address the robustness of the method with respect to measurement noise,
we are looking to minimize a convex combination of the expected value and variance, which we achieve
by using a Karhunen–Loève expansion. The effectiveness of the approach is demonstrated through two-
dimensional numerical experiments.
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1 Introduction

1.1 Motivations
The inverse scattering problem [10] consists in retrieving the physical and parametric properties of an object
from radar or sonar measurements. This problem is of major interest in numerous applications, including
defense, non-destructive testing, health monitoring, and geoscience. For a general mathematical background
on this problem, we refer to the works of Colton and Kress [13, 10, 14, 8].

This work is situated within this context, with the objective of detecting and reconstructing both the shape
and the wavenumber of an unknown object from radar measurements while accounting for uncertainties. We
expect this strategy to overcome the problem of ill-posedness of retrieving the wavenumber alone [13, 10].
Here, as usual, we consider the case of monochromatic incident waves and thus deal with the Helmholtz
equation, with Robin boundary condition. This outer boundary condition models the Sommerfeld one on a
bounded domain. Finally, since we are interested in reconstructing the shape of the target and its wavenum-
ber, the governing equations involve transmission conditions on the unknown interface between the object
and the exterior environment. Our transmission condition models a situation in which the dielectric permit-
tivity ε of the object differs from that of the surrounding medium.
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The adopted strategy is the minimization of an objective functional of Kohn-Vogelius type using Nesterov’s
accelerated gradient descent. From a numerical point of view, we parameterize the shape by a truncated
Fourier series. This allows us to work naturally in a finite-dimensional space. Our methodology thus relies
on tools from shape optimization, presented in the books of Allaire [2], and Henrot and Pierre [24].

Previous studies have considered the shape reconstruction for a similar problem. We can highlight the
work [26] where an exterior Sommerfeld radiation condition is employed. As previously mentioned, we
approximate this condition by the Robin condition. This specific choice allows us to efficiently solve the un-
derlying equations using a finite element method. A further key difference is that they, along with many other
authors (e.g., [19, 3]), employ level-set methods, that allow one to consider topological change. However,
this does not address the ill-posedness of the inverse scattering problem while our parametrization addresses
this issue naturally. Finally, we highlight that they do not consider the reconstruction of the wavenumber.

On the other hand, another strand of the literature consider the case of directly retrieving the dielectric pa-
rameters of the target. For instance, some relevant works include linear sampling method (see, e.g., [7, 9, 15]).
Indeed, this problem has been shown to be very ill-posed and the methods are mostly based on a linearization
of the integral equation in order to inverse the system an retrieve the wavenumber of the object, and in the
same time its shape. Nonetheless, this method are still limited and the result highly depend on the contrast
between the target and the surrounding domain.

Here, we do not consider thin-layers, but in another context, the transmission condition can be replaced
by modeling it through a Ventcel-type condition [25, 6]. Various studies have investigated the simultaneous
reconstruction of the thickness and the impedance condition of the unknown object as [5]. Those analysis
does not incorporate data uncertainties into the reconstruction model. Also, we can remark that in [5], the
authors prove the following identifiability result: the solution to the inverse problem is unique assuming that
any directions of observations and scattering are known. This question, while very important, will not be
considered in the present work.

The use of the Kohn-Vogelius functional has previously been considered in other physical problems, see [11,
16, 12]. Indeed, this approach has shown to be better than the conventional least-square one, even for a
simple inverse scattering case where homogeneous Dirichlet condition is considered for the target bound-
ary [4]. In particular, in [16] they introduced a Karhunen–Loève expansion to handle uncertainties in the
measurements, which we similarly employ in the present study. The authors also seek to reconstruct an
object using shape optimization. However, their work is set within the framework of obstacle reconstruction
with Poisson equation.

This paper is organized as follows. Section 2 presents the equations under study and the main results we
obtained. We introduce a Kohn-Vogelius, which is specifically constructed so that its minimizers coincide
with the solutions of the inverse problem. We prove the existence and give the expressions of the deriva-
tives for both the deterministic case and the case with uncertainties. In the latter case, we develop the
Karhunen–Loève expansion that permits us to replace the cost functional by moments of order 1 and 2
of the deterministic Kohn-Vogelius functional. Section 3 is devoted to illustrate our method by numerical
experiments. In particular, we highlight the advantages of the robust approach. In these experiments, the
objects are represented by truncated Fourier expansions and we minimize the cost functional, thanks to a
Nesterov descent scheme. Section 4 shows that the equations considered are well-posed and addresses the
proofs of the principal results.

1.2 Notations and setting of the inverse problem
Notations. As previously mentioned, in this paper, we focus on an inverse scattering problem. In par-
ticular, even if the work is general, we use the notation of electromagnetic. The situation can be stated
quite simply: we want to detect and reconstruct an unknown obstacle O (which could be, for instance, a
tumor or an airplane), assumed to be included in a domain D, and its wavenumber, from electromagnetic
measurements.
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We study the harmonic case, and thus assume an exp(−i2πft)-time variation where f is the frequency,
inducing the exp(ikr) space variations. In all the following, D denotes a bounded domain, i.e. a connected
open subset of Rd (d = 2, 3) with Lipschitz boundary. To detect the object O, we send planar waves on
this object and we measure a signal uobs via some sensors (such as antennas) on part of the boudary of D
here denoted by Γm. The boundary Γc denotes the part of the boundary that is not covered by the sensors.
Hence, we have ∂D = Γm ∪ Γc. Both parts are not necessarily connected. The Robin condition is imposed
on ∂D. The wave sent corresponds to the incident wave uinc and the wave that comes back to us is the sum
of the scattered wave us and uinc, that is u = uinc + us. Hence, we know uinc everywhere and we also know
the sum u = uobs = uinc + us on the sensors Γm. For a schematic representation of the inverse scattering
problem, one can refer to Figure 1.

Γm

uobs

Γc

D O

uinc

Figure 1: An example of scattering inverse problem.

In the following, we will consider the following set of admissible shapes O:

Uadm = {O ⊂ D; O is closed with Lipschitz boundary and such that D \ O is connected} .

We also assume that the wavenumber is constant in both O and D ⊂ O. From now on, we write O1 the
unknown and O2 = D \ O1 such that the wavenumber on Oj is written kj , j = 1, 2. Notice that k1 is then
unknown and k2 is known. In the following, we assume that

Im(k2) > 0

and we will consider the following set of admissible wavenumber Kadm:

Kadm = {k1 ∈ C; Re(k1)Re(k2) > 0 and Im(k1) > 0} .

The conditions on the imaginary parts of the wavenumbers are in line with the convention we choose for the
time-variation. It shall also be noted that this also ensure the condition on the real part of k1 and k2 since
they will be of same sign. In the other case, both imaginary parts are negative provided that we also change
the sign of the term −iku in the Robin condition.

Setting of the inverse problem. The inverse problem can then be stated as follows: we aim to find an
admissible shape O1 ∈ Uadm, an admissible wavenumber k1 ∈ Kadm and u ∈ V such that

∆uj + k2ju = 0 in Oj

∂nu2 − ik2u2 = h on ∂D
u2 = uobs on Γm

[u] = [∂nu] = 0 on ∂O1,
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where h ∈ H−1/2(∂D) and uobs ∈ H1/2(Γm) are given and V = {u ∈ H1(D) such that [u] = 0 on ∂O1}. Here
and in all the following, for each quantity oj defined on a subdomain Oj , we denote by [o] = o1−o2 the jump
of o on ∂O1. In order to simplify the notations, in the following, we also denote by χj the characteristic
function of Oi and omitting the subscript implies that we consider the sum o = χ1o1+χ2o2. As an important
example, k denotes the sum χ1k1 + χ2k2 and we can write

∆u+ k2u = 0 in D.

Remark 1.1
We underline that, using the Robin boundary condition on ∂D, both Dirichlet uobs and Neumann ∂nuobs
conditions are known on Γm.

2 Main results
In this section, we define the Kohn-Vogelius functional used in this work and state the main theoretical
results of this work. First, we calculate its derivative with respect to its two unknowns, that are O1 and k1.
Then, we give a method that takes into account noise on the input data, i.e., the robust method. The general
forward problem we aim to solve can be stated as finding functions uj ∈ H1(Oj) such that

∆u+ k2u = 0 in D
∂nu− ik2u = h on Γc

u = uobs on Γm

[u] = 0 on ∂O1

[∂nu] = g on ∂O1,

(T (O1))

where g ∈ H−1/2(∂O1), h ∈ H−1/2(Γc) and uobs ∈ H1/2(Γm). The potential errors and uncertainties will
occur on the functions h and uobs.

Remark 2.1
A very peculiar case is when Γm is empty and g = 0. This means that we do not consider any sensors and
a transmission condition [∂nu] = 0, in other words it corresponds to the physical forward case.

The homogeneous forward problem (with uobs = 0) T (O1) writes under variational form as finding u ∈ V
such that ∫

D

(
∇u · ∇v − k2uv

)
− ik2

∫
∂D

uv =

∫
∂D

hv +

∫
∂O1

gv for all v ∈ V,

where the notation v denotes the complex conjugate of v. Note that since our functions are complex-valued,
the scalar product we consider is hermitian.

Proposition 2.2
Under the assumptions above, the transmission problem (T (O1)) is well-posed.

Concerning the above inverse problem, we now reformulate it as an optimization problem. We introduce the
Kohn-Vogelius (also used in other example as in [11]) functional as follows

K(O1, k1) =
1

2

∫
D
|∇(uD − uR)|2, (2.1)

where uD = uD(O1, k1) ∈ V and uR = uR(O1, k1) ∈ V are the unique solutions to the problems
∆uD + k2uD = 0 in D
∂nuD − ik2uD = h on Γc

uD = uobs on Γm

[uD] = [∂nuD] = 0 on ∂O1,

 ∆uR + k2uR = 0 in D
∂nuR − ik2uR = h on ∂D
[uR] = [∂nuR] = 0 on ∂O1.

(2.2)

The cost functional K has two parameters O1 and k1 that correspond to our two unknowns. By the proposi-
tion above, the equations defining uD and uR are well posed. We see that the solutions to the inverse problem
minimize the functional as they are zeros of K. However, we do not know if all minimizers are solutions
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to the inverse problem. This question is related to the identifiability of the problem: is knowing h and g
enough to determine O1 and k1? If we consider another problem, such as the perfectly electric conductor
(PEC), i.e. u = 0 on ∂O1, the identifiability can be proved adapting the property 4.4 of [17]. In the context
of thin-layer and reconstructing the impedance, Bourgeois et al. showed in [5] that identifiability holds in
the case where all observation and scattering directions are known.

In the following, we aim to use an iterative Nesterov scheme (see section 4 for more details) to minimize
the previous functional. To do so, we need to compute a gradient at each iteration with respect to both
the shape O1 and the wavenumber k1. To calculate the shape gradient, we use the classical notion of shape
derivative, that we briefly recall here (see [24]).

Definition 2.3 (Shape derivative)
Let J : Dadm → R be a functional defined on a class of admissibles shapes Dadm. Let W be a functional
subspace of W 1,∞(Rd) and denote the identity Rd → Rd by I. The shape derivative of J at O is the Fréchet
derivative of {

W → R
θ 7→ J((I + θ)(O))

if it exists. It will be denoted in the following by DO1J (O)(θ).

In this article, the functional subspace W used in the proof is W 1,∞
0 (D). It is the subspace of W 1,∞(Rd),

made of functions with traces that vanish on ∂D.

2.1 Deterministic case
We begin by giving the expression of the derivatives of K with respect to both the wavenumber k1 and the
shape O1 in the deterministic case.

Proposition 2.4 (Derivative with respect to O1)
Let k1 ∈ Kadm. For every O1 ∈ Uadm, and θ ∈ W1,∞

0 (D), the shape derivative of the Kohn-Vogelius functional
can be expressed as follows

DO1K(O1, k1)(θ) = Re

(∫
∂O1

(k21 − k22)(uDρD − uRρR)(θ · n)
)
,

where ρD ∈ V and ρR ∈ V are solutions to the adjoint equations
∆ρD + k2ρD = −k̄2(uD − uR) in D
∂nρD − ikρD = ∂n(uD − uR) on Γc

ρD = 0 on Γm

[ρD] = [∂nρD] = 0 on ∂O1,

 ∆ρR + k2ρR = −k̄2(uD − uR) in D
∂nρR − ikρR = ∂n(uD − uR) on ∂D

[ρR] = [∂nρR] = 0 on ∂O1.

(2.3)

Proposition 2.5 (Derivative with respect to k)
Let O1 ∈ Uadm. For every k1 ∈ Kadm, the derivative of the Kohn-Vogelius functional (2.1) with respect to k1
exists and

∂K(O1, k1)

∂k1
= 2

∫
O1

(ρDuD − ρRuR)k1,

where uD ∈ V and uR ∈ V are defined in the equations (2.2) and ρD ∈ V and ρR ∈ V are solutions to the
previous equations (2.3).

2.2 Case with uncertainties
The method detailed above is considered under ideal conditions, i.e., a deterministic case where the quanti-
ties uobs and h are known with precision. In practice, however, this is not the case. Two factors compromise
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the effectiveness of our approach. First, there is a noise on uobs which arise from measurements. Second, h
depends on the incident wave vector that may deviate from our exact expectations.

In order to take into account those uncertainties, we consider a stochastic framework where we assume that
the errors follow a statistical law. Precisely, we let (Ω, T ,P) be a probability space, h ∈ L2

P(Ω,H
−1/2(∂D))

and uobs ∈ L2
P(Ω,H

1/2(Γm)). For a given ω ∈ Ω, the inverse problem in the first strategy can be rewritten
as finding O1 ∈ Uadm, k1 ∈ Kadm and u(ω) ∈ V such that

∆u(ω) + k2u(ω) = 0 in D
∂nu(ω)− iku(ω) = h(ω) on ∂D
u(ω) = uobs(ω) on Γm

[u(ω)] = [∂nu(ω)] = 0 on ∂O1.

In practice, the main difficulty lies in the fact that we know only the realizations of the random variables uobs
and h. There are many ways to solve the problem with uncertainties. We could use a Monte-Carlo method
or a stochastic gradient descent, but it would lead to very long computation time. To overcome this problem,
we choose to minimize a combination of the expected value and the variance of the considered functional K,
that is to say we are considering

K̃(O1, k1, ω) = (1− α)E(K(O1, k1, ω)) + αV(K(O1, k1, ω)),

for α ∈ [0, 1]. Hence, the problem is reduced to a purely deterministic problem which can be treated as
before. For this purpose, we rely on a truncated Karhunen-Loève expansion (see [21, 16] for more details).
Let M > 0 be an integer, Y be a centered and normalized random variable with all the moments of order
lower than 4 finite. We consider M independent and identically distributed random variables Yi ∼ Y ,
(gm)1≤m≤M ∈ H1/2(Γm) and (hm)1≤m≤M ∈ H−1/2(Γm) such that

uobs(x, ω) = g0(x) +

M∑
m=1

gm(x)Ym(ω) and h(x, ω) = h0(x) +

M∑
m=1

hm(x)Ym(ω). (2.4)

By linearity of the Helmholtz equation, we get

uR(ω) = uR0
+

M∑
m=1

uRm
Ym(ω) and uD(ω) = uD0

+

M∑
m=1

uDm
Ym(ω),

where uDm ∈ V and uRm ∈ V solve for all 0 ≤ m ≤M ,
∆uDm + k2uDm = 0 in D
∂nuDm − ikuDm = hm on Γc

uDm
= gm on Γm

[uDm
] = [∂nuDm

] = 0 on ∂O1,

 ∆uRm
+ k2uRm

= 0 in D
∂nuRm

− ikuRm
= hm on ∂D

[uRm ] = [∂nuRm ] = 0 on ∂O1.

We can compute E(K(O1, k1, ω)) and V(K(O1, k1, ω)) in any cases, but we will consider the case Y ∼ N (0, 1)
to simplify the expressions of the variance in the following.

Proposition 2.6 (Expression of the expected value of the functional)
In the framework described above, we have

EK(O1, k1) = E(K(O1, k1, ω)) =
1

2

∫
D

M∑
m=0

|∇(uDm
− uRm

)|2.

For θ ∈ W1,∞
0 (Rd), O1 ∈ Uadm and k1 ∈ Kadm, the derivatives given by the adjoint exist and are given by

DO1
EK(O1, k1)(θ) =

M∑
m=0

Re

(∫
∂O1

(k21 − k22)(uDm
ρDm

− uRm
ρRm

)(θ · n)
)
,
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∂EK(O1, k1)

∂k1
= 2

M∑
m=0

∫
O1

(ρDm
uDm

− ρRm
uRm

)k1, (2.5)

where ρDm
∈ V and ρRm

∈ V solve, for all 1 ≤ m ≤M ,
∆ρDm + k2ρDm = −k2(uDm − uRm) in D
∂nρDm − ikρDm = ∂n(uDm − uRm) on Γc

ρDm
= 0 on Γm

[ρDm
] = [∂nρDm

] = 0 on ∂O1,

 ∆ρRm
+ k2ρRm

= −k2(uDm
− uRm

) in D
∂nρRm

− ikρRm
= ∂n(uDm

− uRm
) on ∂D

[ρRm ] = [∂nρRm ] = 0 on ∂O1.

Proposition 2.7 (Expression of the variance of the functional)
We introduce the notation di = uRi − uDi and pj,i = uDiρDj − uRiρRj . Let O1 ∈ Uadm, k1 ∈ Kadm. In the
framework described above, if Y ∼ N (0, 1), we have

VK(O1, k1) = V (K(O1, k1, ω)) =
1

4

(∫
D
|∇d0|2

)2

+
1

2

(∫
D
|∇d0|2

)( M∑
m=1

∫
D
|∇dm|2

)

+

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))2

+Re

 ∑
1≤m<l≤M

(∫
D
∇dm∇dl

)2
+

1

2

M∑
m=1

(∫
D
|∇dm|2

)2

. (2.6)

For θ ∈ W1,∞
0 (D), the derivatives given by the adjoint method are now

DO1
VK ((O1, k1)) (θ) = Re

(∫
∂O1

(k21 − k22)G(θ · n)
)

and
∂VK(O1, k1)

∂k1
= 2

∫
O1

Gk1

where

G =
1

2

(∫
D
|∇d0|2

) M∑
m=1

pm,m + 2

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))
p0,m

+ 4
∑

1≤m<l≤M

Re

(∫
D
∇dm∇dl

)
pm,l +

M∑
m=1

(∫
D
|∇dm|2

)
pm,m. (2.7)

3 Numerical experiments
To illustrate the effectiveness of our approach, we present numerical experiments in 2D.

3.1 Algorithm
To ensure visibility of the unknown target, we consider different incidents directions θj for 1 ≤ j ≤ J . For
each direction, we take

hj = i(k − kjinc(θj) · n)ui0exp(−ik
j
inc(θj) · r),

where kjinc corresponds to the incident wave vector given by kjinc = −k(cos(θj), sin(θj)). It is important to
note that we have in total J functionals rather than a single one. We chose to minimize each functional
successively over a given number of iterations. Our method consists of a sequential process: we begin
by minimizing with respect to the first direction of the plane wave, then the second, and so on, until all
directions have been considered. This cycle is then repeated, starting again with the first direction. The
descent method used in the following is the Nesterov’s accelerated gradient scheme [27]:

xn+1 = yn − τO1,k1∇f(yn)

yn+1 = xn+1 +
ηt − 1

ηt+1
(xn+1 − xn) , y0 = x0

ηt+1 =
1 +

√
1 + 4η2t
2

, η0 = 1,

7



with restarting [28]: if K(xn+1) > K(xn), we take η0 = 1, x0 = xn, y0 = xn. The variables in the algorithm
(e.g. xn and yn) are vectors of size 2 of the form [O1, k1] and the step time τ is τO1,k1

= [τO1
, τk1

]. Hence,
both shape and parameters are updated at each iteration at the same time, with their own gradient and step τ .

The choice of the two descents step is a key point of our algorithm. If the step size are too large, the process
becomes unstable, potentially leading to divergence or even failure to converge at all. On the other hand, if
the step sizes are too small, the reconstruction becomes excessively slow.

In addition, we consider a truncated Fourier series parametrization for the boundary of the object O1:

∂O1 =

[
xc
yc

]
+

(
r +

N∑
n=1

ancos(nθ) + bnsin(nθ)

)[
cos(θ)
sin(θ)

]
.

To avoid the instability of the inverse problem, the Fourier coefficients are introduced incrementally. The
first five iterations are used to adjust the center. The radius is introduced after this fifth iteration, and
each subsequent Fourier coefficient is added at multiples of 30 iterations. Hence, the more iterations we do,
the bigger is the number of Fourier coefficients we accumulate by the end of our algorithm. Note that we
could also choose to add them following a criterion, such as adding some coefficients if the functional is not
changing over a certain number of iterations. Nonetheless, the goal here is to validate the method. The
general idea of the proposed scheme is summed up in the pseudo-code 1.

Algorithm 1 Descent algorithm
Require: Niter, Nseq, θinc

for 0 ≤ n < Niter do
for θj ∈ θinc do

Nesterov scheme with Nseq iterations and the functional Kj

end for
end for

3.2 Implementation
We conduct numerical experiments to assess the effectiveness of the different methods developed earlier in
section 2. We use the PDE solver FreeFEM++ (see [23]) and the package pyfreefem (see [22]) to interface
with Python. The FreeFEM++ version we use is parallelized using the MPI library. The resolution of the
inverse problem requires a high-performance computing (HPC) cluster, specifically Pyrene developed at the
Université de Pau. The forward problem is first modeled using P2 finite elements on a highly refined mesh.
The solution is then computed on a new mesh with P1 finite elements to avoid the inverse crime problem.

We use the parallelization for the robust case only. It is implemented as a process distribution, where each
process corresponds to a term in the Karhunen–Loève expansion (2.4). Thanks to this method, we were
able to increase the order of the expansion while maintaining approximately the same computation time.
With 5 terms in the expansion, each iteration requires approximately 60s.

3.3 Results
In all the experiences below, we consider a general domain D, which is modeled as a disk of radius 1. We
consider four incident waves coming from directions θi = 0, π2 , π and 3π

2 , with each having the same amplitude
of 1 and the same frequency f = 1 MHz. The space of measures Γm is constituted of six uniformly distributed
intervals on the boundary of D. In the following, our main objective is to reconstruct a shape that does not
enter into our Fourier parametrizations. We will name it the "kite" and it can be parameterized by[

x
y

]
=

[
0.3 cos(t) + 0.2 cos(2t)

0.4 sin(t)

]
.
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For the object we consider a wavenumber, k1, associated to a permittivity ε = 50 + 29j. The outside
permittivity is taken ε = 10 + 4j. The initial guess for the shape is a disk with a radius of 0.6. The descent
is performed with a total of 400 iterations, with Niter = 4 descent directions, Nseq = 25 sequential step per
direction, and a step size of 0.02.

3.3.1 Deterministic reconstruction

Deterministic reconstruction of the shape at fixed wavenumber. First, we aim to reconstruct the
shape assuming that we know the wavenumber. Hence, we take k1 as the initial wavenumber and attempt
to reconstruct the kite shape. The results, depicted in Figure 2, show the final retrieved shape (orange,
dashed) closely approximately the true kite geometry (plain). In Figure 2, we also represent the evolution
of the functional. The initial shape is represented in dotted. All the figures represented will have the same
convention.

(a) Evolution of the functional (b) Retrieved shape

Figure 2: Reconstruction of the shape at fixed wavenumber

The objective functional does not decrease monotonically. Indeed, the functional we minimize along the
descent depends on the incident direction. Hence, we can observe some jumps in the functional decrease.
They correspond to the changes of initial direction. Moreover, the difference between the total number of
iterations (400) and the number of points plotted is due to the removal of certain iterations at restart points
within the algorithm. Nevertheless, we can see that the functional decreases globally and converges to 0
with the number of iterations. All the other experiments have a similar behaviour for the functional.

Determinist reconstruction of the wavenumber at fixed shape. We also attempted to reconstruct
the wavenumber k1 using the unknown as the initial shape. Initially, we set the shape update step τO1

to 0, so that the algorithm is a Nesterov descent on the parameter k only. In this experience only, the
objective shape is the initial shape: the disk of radius 0.6. Also, we have chosen Niter = 1. However, this
intuitive approach failed. We observed that the functional J is extremely sensitive to the unknown shape
(we refer to [18, Section 4.3] where this observation was done in another context). Indeed retrieving the
permittivity is a very ill-posed inverse problem in general. In particular, in our setting, i.e., the size of
the object of around λ/300, we are in the Rayleigh diffraction zone where the scattering waves variations
are dominated by the area of the target. Therefore, this sensitivity suggests that even very small shape
variations of the shape (for instance, those introduced by copying the shape to a new mesh) result in large
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variations in J . Our solution was to consider a very small step for the shape update (0.0001) compared to
the wavenumber update (0.4). This strategy keeps the shape very close to the true one. We tested this with
two initial wavenumbers: 0.9k1 and 1.2k1. All the other parameters remain the same. In Figure 3, we plot
the evolution of the real and imaginary parts of the wavenumber during the reconstruction.

(a) Initialization with 0.9k1 (b) Initialization with 1.2k1

Figure 3: Reconstruction of the wavenumber at fixed shape

We can notice that the results are very accurate in both cases, even if no regularization is performed. Further-
more, this highlight the importance of the proposed dual strategy, i.e., incorporating the shape reconstruction,
for the inverse scattering problem. It shall also be noted that obstacle detection and reconstruction at low
frequency is of interest for the electromagnetic community [29].

3.3.2 Reconstruction with uncertainties:

Simultaneous reconstruction with uncertainties and the expected value: We now attempt the
simultaneous reconstruction of both the shape and the parameter with noisy data. To do so, h0 is assumed
to be the deterministic data, with g0 being the associated observation uobs. Then, we consider gm and hm
of the following forms:

gm = βg sin(mϕ) and hm = βh sin(kϕ)i(k − kjinc(θj) · n)exp(−ik
j
inc(θj) · r),

where (ϕ, r) are the usual polar coordinates.

We first consider the minimization of the expected value only. We investigate one case with 5% of noise on g
and 1% on h, and conversely 1% of noise on g and 5% on h, see 5. By "percentage of noise," we refer to the
noise level relative to the squared of the L2-norm on the boundary. Thus, βg and βh were chosen to match
these expected noise percentages. As an example, 5% of noise on g and 1% on h correspond to

0.052 = βgE

(
||g1 + g2 + g3 + g4||2L2(Γm)

||g0||2L2(∂D)

)
and

0.012 = βhE

(
||h1 + h2 + h3 + h4||2L2(∂D)

||h||2L2(∂D)

)
.

In Figure 4, we represent the final shape and the evolution of the wavenumber for both experiments.
With these levels of noise, we see that the method is able to retrieve both shape and wavenumber and remain
robust under uncertainties.

Simultaneous reconstruction with uncertainties by minimization of the expected value and
variance: Lastly, we put 3% of errors on both h and g and consider 3 different combinations of expected
value and variance. Hence, the functional considered is

J = (1− α)EK(O1, k1) + αVK(O1, k1).
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(a) Reconstruction of the shape with βg = 5% and βh = 1% (b) Reconstruction of the shape with βg = 1% and βh = 5%

(c) Evolution of k1 with βg = 5% and βh = 1% (d) Evolution of k1 with βg = 1% and βh = 5%

Figure 4: Simultaneous reconstruction with noisy data and minimization of the expected value.
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In Figure 5, we represent the final shape for the three values of α. In Figure 6, we represent the evolution
of the real parts of the wavenumber for the three experiments.

(a) α = 0 (b) α = 0.25 (c) α = 0.5

Figure 5: Simultaneous reconstruction with noisy data and a linear combination of the wavenumber and
variance

Figure 6: Simultaneous reconstruction of the wavenumber with noisy data and a linear combination of the
wavenumber and variance

We observe that increasing the value of α smooths the reconstructed shape, leading to a slightly worse
reconstruction. On the other hand, the wavenumber becomes more stable with increasing variance. This
tests show that the variance act as a regularizer for the robust approach and thus the choice of a good α is
critical.

4 Proofs
In this section, we provide the proofs of the propositions stated above.

4.1 Proof of the well-posedness of the problem T (O1)

We present the proof in the particular case where g = 0 and Γm is empty, which corresponds to the forward
physical equation with Robin boundary conditions only. The results, however, remain valid in full generality,
up to a modification of the linear form l in the proof. Hence, all the problems considered in this paper are
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well-defined including the adjoint problems. We remind first two results of elliptic PDEs used in the following
proof.

Theorem 4.1 (Banach-Nečas-Babuska Theorem (BNB), [20, Theorem 25.9])
Let V be a Banach space, W be a reflexive Banach space and a ∈ L(V ×W,C). The following items are
equivalent:

1. For any l ∈W ′, there exists a unique u ∈ V such that

a(u,w) = l(w), for all w ∈W.

2. There exists β > 0 such that infv∈V supw∈W
a(v,w)
||w||W = β and (∀v ∈ V, a(v, w) = 0 ⇒ (w = 0)) .

3. There exists β1, β2 > 0 such that infv∈V supw∈W
a(v,w)

||v||V ||w||W = β1 and infw∈W supv∈V
a(v,w)

||v||V ||w||W = β2.

We also have a lemma that provides a sufficient condition for applying the BNB:

Lemma 4.2 (Gårding’s lemma, [20, Lemma 35.3])
Let V ↪→ L be two Banach spaces with compact embedding. Let a : V × V → C be a bounded sesquilinear
form. Assume that there exist two real numbers β, γ > 0 such that the following holds:

1. |a(v, v)|+ β||v||2L ≥ γ||v||2V , ∀v ∈ V

2. [a(v, w) = 0, ∀w ∈ V ] ⇒ (v = 0).

Then the second condition of the BNB Theorem is satisfied.

Proof of the well-posedness of the problem T (O1). To prove this we make use of the Lemma 4.2 and thus
prove its two points.

1. Let us denote A(u, v) =
∫
D ∇u∇v − k2uv − ik2

∫
∂D uv and consider Re(A(u,−ik2u)).

Re(A(u,−ik2u))

= Re
(
i
[
k2||∇u||2L2(O1)

+ k2||∇u||2L2(O2)
− k21k2||u||2L2(O1)

− k22k2||u||2L2(O2)

]
+ |k2|2||u||2L2(∂D)

)
= Im(k21k2)||u||2L2(O1)

+ Im(k2)
[
||∇u||2L2(D) + ||k2u||2L2(O2)

]
+ |k2|2||u||2L2(∂D).

Hence, with the definition of Kadm,

|k2||A(u, u)|+ |Im(k21k2)|||u||2L2(O1)
≥ Im(k2)

[
||∇u||2L2(D) + ||k2u||2L2(O2)

]
+ |k2|2||u||2L2(∂D)

and we get the first point of the Gårding’s lemma.

2. For the second point, assume that A(u, v) = 0 for every v ∈ V . Hence,

Im(A(u, u)) = −Re(k2)
(
||u||L2(∂D)) + 2Im(k2)||u||L2(O2)

)
− 2Re(k1)Im(k1)||u||L2(O1) = 0

and, since Im(k1) > 0 and the real parts Re(k1) and Re(k2) have the same sign, we obtain ||u||L2(∂D) =
0. By the Robin condition ∂nu = 0 on ∂D and u is solution of the Cauchy problem for the Helmholtz
equation in O2. The jump condition on ∂O1 shows that u is also solution of the Cauchy problem for
the Helmholtz equation in O1 and that u ≡ 0 in D.

13



4.2 Reminder on shape optimization
First, we remind two important lemmas that are necessary for the following proof.

Lemma 4.3
Let J : Dadm → R be a functional defined on a class of admissible shapes Dadm. Let θ ∈ W1,∞

0 (D) and
f ∈ L1(Rd). If J(Oθ) =

∫
Oθ
f(θ), then

J ′(O)(θ) =

∫
O
f ′(x) +

∫
∂O

f(θ · n),

where f ′(x) denotes the Fréchet derivative of the map θ 7→ f(x+ θ(x)).

Proof. This is the result [24, corollary 5.2.8] from the book of Henrot and Pierre applied with Φ(x) =
(I + tθ(x)).

Lemma 4.4 (Lemma 5.3.3 [24])
Let ψ : W1,∞(Rd) → W1,∞(Rd) continuous at 0 with ψ(0) = I and g : W1,∞(Rd) → W1,p(Rd), with
1 ≤ p < +∞. If θ 7→ (g(θ), ψ(θ)) ∈ Lp(Rd) × L∞(Rd) is differentiable at 0 with g′(0) continuous, then the
application

G : θ ∈ W1,∞(Rd) 7→ g(θ) ◦ ψ(θ) ∈ Lp(Rd)

is differentiable at 0 and

G′(0)ξ = g′(0)ξ +∇g(0) · ψ′(0)ξ.

4.3 Proofs concerning the deterministic case
The proof of the proposition 2.4 is divided into two steps. First, we classically differentiate the functional K
using the technical lemmas recalled in the last subsection. We obtain an expression which is not satisfactory
from a numerical point of view. Indeed, in order to apply a Nesterov descent scheme, we need to efficiently
compute a clear direction of descent. Thus, the second step of the proof consists in introducing adjoints in
order to establish the proposition 2.4.

Lemma 4.5
For every O admissible, and θ ∈ W1,∞

0 (D) the shape derivative of the functional (2.1) exists and

DO1K(O1, k1)(θ) = Re

(∫
D
∇(u′D − u′R) · ∇(uD − uR)

)
, (4.1)

where u′R ∈ H1(D) and u′D ∈ H1(D) are solutions to


∆u′R + k2u′R = 0 in D
∂nu

′
R − iku′R = 0 on ∂D

[u′R] = 0 on ∂O1

[∂nu
′
R] = (k21 − k22)uR(θ · n) on ∂O1,


∆u′D + k2u′D = 0 in D
∂nu

′
D − iku′D = 0 on Γc

u′D = 0 on Γm

[u′D] = 0 on ∂O1

[∂nu
′
D] = (k21 − k22)uD(θ · n) on ∂O1.

The proof of this lemma is similar to the one proposed by Afraites and Dambrine in [1, Theorem 3.1] for a
different problem. However, our weak formulation differs and we have to proceed differently for the steps 2

and 3 of their proof. The main difference to the proof of Afraites and Dambrine is that w(t)−u
t does not

belong to the space V and we cannot demonstrate its weak convergence as they do. Therefore, we directly
prove that it converges strongly to a chosen quantity.
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Proof of the lemma 4.5. Fix O ∈ Uadm and θ ∈ W1,∞
0 (D). We denote by uD(θ) and uR(θ) the solutions to

the problems (2.2) with O1 = (I + θ)(O). We only need to prove that θ 7→ uR(θ) and θ 7→ uD(θ) have
shape derivatives. The two computations being very similar, we will do this work for uR only. To lighten the
notations, we denote uθ = uR(θ). We can notice that for every θ ∈ W1,∞

0 (D), the functions uθ are in H1
Oθ

(D).
To study the derivation of the application θ 7→ uθ, we consider the application w(t) = uθ ◦ (I + tθ) defined
on the space H1

O(D), which does not depend on the choice of θ.

If u has a derivative u̇, then we should have w(t)−u
t that goes to u̇. This remark gives us a candidate for the

variational formulation that should be satisfied by u̇. We will use that formulation to show that w(t)−u
t ef-

fectively goes to u̇ and then compute the equation satisfied by the shape derivative u′ thanks to the lemma 4.4.

By a change of variable w(t) is solution of the weak problem∫
D

(
A(t)∇w∇v − J(t)k2wv

)
− ik2

∫
∂D

wv =

∫
∂D

hv, ∀v ∈ V

where J(t) = det(I + tDθ) and A(t) = J(t)(I + tDθ)−1(I + tDθT )−1. Subtracting by the variational form
associated to u and dividing by t ̸= 0, we get∫
D

(
A(t)

∇w(t)−∇u
t

∇v − J(t)k2
w(t)− u

t
v

)
− ik2

∫
∂D

w(t)− u

t
v =

∫
D

I −A

t
∇u∇v − k2

1− J

t
uv, ∀v ∈ V

The matrix A is usual in shape optimization and satisfies the following properties [1]: A(t, x) is symmetric
positive, A(0) = I with

A =
d

dt
A(t) t=0 = div(θ)I − (DθT +Dθ)

and for t small enough, we have

∀X ∈ Rd, XTA(t)X ≥ ||X||2

2
. (4.2)

Similarly, the quotient J(t)−1
t goes to div(θ) when t goes to 0 by differentiation of the det application.

Therefore, we let u̇ ∈ V that satisfies∫
D

(
∇u̇∇v − k2u̇v

)
− ik2

∫
∂D

u̇v = −
∫
D
A∇u∇v − k2div(θ)uv, ∀v ∈ V

The function u̇ is well defined since this is the same variational form than the transmission problem, but
with a different sesqui-linear term on the right. At this stage, we do not know if u̇ is the desired derivative.
It is merely a candidate function that exists. Denote w(t)−u

t − u̇ by d(t). We are done if we show that d(t)
goes to 0 in H1(D). Subtracting the two last equations, we get

∫
D
A(t)∇d(t)∇v − k2J(t)d(t)v − ik2

∫
∂D

d(t)v =

∫
D

[(
I −A(t)

t
+A

)
∇u+ (I −A(t))u̇

]
∇v

−
∫
D
k2
[(

1− J(t)

t
+ div(θ)

)
u+ (1− J(t))u̇

]
v.

We use d(t) as a test function and proceed as in the last proof, by majoring the imaginary part of the left
side by the modulus of the right side. Thus, using similar method than in the sub-section 4.1, we get by the
Cauchy-Schwarz inequality and the continuity of J , for t small enough,

||d(t)||2L2(∂D) ≲u,k,u̇

(∣∣∣∣I −A(t)

t
+A

∣∣∣∣
∞

+ |I −A(t)|∞ +

∣∣∣∣1− J(t)

t
+ div(θ)

∣∣∣∣+ |1− J(t)|
)
||d(t)||H1(D)

and

||d(t)||2L2(D) ≲u,k,u̇

(∣∣∣∣I −A(t)

t
+A

∣∣∣∣
∞

+ |I −A(t)|∞ +

∣∣∣∣1− J(t)

t
+ div(θ)

∣∣∣∣+ |1− J(t)|
)
||d(t)||H1(D),
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where ≲A,B denotes being less than or equal to, up to a multiplicative constant that depends only on the
quantities A and B.

Finally, if we come back to the whole expression with d(t) as a test function, by the property (4.2) of A, we
get

||d(t)||2H1(D) ≲u,k,u̇

(∣∣∣∣I −A(t)

t
+A

∣∣∣∣
∞

+ |I −A(t)|∞ +

∣∣∣∣1− J(t)

t
+ div(θ)

∣∣∣∣+ |1− J(t)|
)
||d(t)||H1(D)

so that ||d(t)||H1(D) → 0 when t goes to zero. We have just shown that u̇ is the derivative of u. Consider now
the shape derivative u′ = u̇−∇u · θ (given by the lemma 4.4 with ψ(θ) = (I + θ)−1 and g(θ) = uθ ◦ (I + θ)).
Adapting the computation of the step 4 of the proof of [1, Theorem 3.8], we first conclude that∫

D
∇(u̇−∇u · θ)∇v =

∫
D

(
∇u′∇v +A∇u∇v − k2u(θ · ∇v)

)
.

Using the variational formulation satisfied by u̇, we get∫
D

(
∇u′∇v − k2u′v

)
− ik2

∫
∂D

u′v =

∫
D
k2u(θ · v) +

[
(∇u · θ) + k2 (div(θ)u+ (∇u · θ))

]
v

=

∫
D
k2u(θ · ∇v) + k2div(uθ)v

=

∫
D
k2div(uθv).

By the Green formula on both O1 and O2, we have∫
D

(
∇u′∇v − k2u′v

)
− ik2

∫
∂D

u′v =

∫
∂O2∩O1

k22uv(θ · n) +
∫
∂O1

k21uv(θ · n) =
∫
∂O1

(k21 − k22)uv(θ · n).

We recognize the weak formulation of the problem T (O1). By the lemma 4.3 below, we conclude that shape
derivative exists and has the desired expression.

Proof of the adjoint method: proposition 2.4. By an integrations by part and the equation satisfied by ρ we
have: ∫

Oi

∇u′D · ∇(uD − uR) =

∫
Oi

−(u′D∆(uD − uR) +

∫
∂(Oi)

u′D∂n(uD − uR)

=

∫
Oi

−u′D(∆ρD + k2ρD) +

∫
∂(Oi)

u′D∂n(uD − uR)

=

∫
∂(Oi)

∂nu
′
DρD − ∂nρDu

′
D + u′D∂n(uD − uR).

Similarly, ∫
Oi

∇u′R · ∇(uD − uR) =

∫
∂Oi

∂nu
′
RρR + u′R(∂n(uD − uR)− ∂nρR).

On ∂D, the integrals are null thanks to the adjoint equation. Hence, we just need to compute the quantities

ID =

∫
∂O1

∂nu
′
DρD + u′D(∂n(uD − uR)− ∂nρD) +

∫
∂O2∩O1

∂nu
′
DρD + u′D(∂n(uD − uR)− ∂nρD)

and

IR =

∫
∂O1

∂nu
′
RρR + u′R(∂n(uD − uR)− ∂nρR) +

∫
∂O2∩O1

∂nu
′
RρR + u′R(∂n(uD − uR)− ∂nρR).
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By the jump conditions and the identity [ab] = [a] b1+b2
2 + [b]a1+a2

2 , we have

ID =

∫
∂O1

(k21 − k22)uDρD(θ · n) and IR =

∫
∂O1

(k21 − k22)uRρR(θ · n)

so that

DO1K(O1, k1)(θ) = Re

(∫
D
∇(u′D − u′R) · ∇uD − uR

)
= Re

(∫
O1

(k21 − k22)(uDρD − uRρR)(θ · n)
)
.

To study the derivative with respect to the wavenumber, we proceed in a similar way. First, we compute
a preliminary expression of the derivative. Then, we introduce the adjoint variables ρD and ρR in order to
prove the proposition 2.5.

Lemma 4.6 (Derivative with respect to k)
For every k1 admissible, the derivative of the functional (2.1) with respect to k1 exists and

∂K(O1, k1)

∂k1
=

∫
D
∇(uD − uR) · ∇(u′D − u′R), (4.3)

where u′R and u′D ∈ H1(D) are solution to


∆u′R + k22u

′
R = 0 in O2

∆u′R + k21u
′
R = −2k1uR in O1

∂nu
′
R − iku′R = 0 on ∂D

[∂nu
′
R] = [u′R] = 0 on ∂O1,


∆u′D + k2u′D = 0 in O2

∆u′D + k21u
′
D = −2k1uD in O1

∂nu
′
D − iku′D = 0 on Γc

u′D = 0 on Γm

[∂nu
′
D] = [u′D] = 0 on ∂O1.

Contrary to the proof of proposition 4.5, we will use the implicit function theorem, that is more convenient
in our case. As before, we will only consider the derivatives of k1 7→ uR(k1).

Proof. Let us fix an admissible wave-number k1 and define the function

F :

{
C×H1(D) → (H1(D))′

(k, u) 7→
(
v 7→

∫
D ∇u∇v − k2uv − ik

∫
∂D(u+ h)v

)
.

The application F is C1 and is chosen such that F (k, u) = 0 if and only if u is solution to the problem (T (O1)).
We have

∂uF (k, uR(k))(u)v =

∫
D
∇u∇v − k2uv − ik

∫
∂D

uv.

This is an isomorphism from H1(D) to (H1(D))′ by well-posedness of the problem (T (O1)). By the implicit
function theorem, there exists ũ : C0(D,C) → H1(D) a C1 function defined on a neighborhood of 0 such that
F (k, ũ(k)) = 0. By well-posedness of the problem (T (O1)), we have ũ(O1, k) = uR(k) and k 7→ uR(k) is C1

on a neighborhood of k1. Then, derivating the variational form, we see that u′R(k1) satisfy∫
D
∇u′R∇v − k2u′Rv − ik2

∫
∂D

u′Rv =

∫
O1

2k1uRv, ∀v ∈ V.

This shows that u′R satisfy the desired problem.

The expression of the derivative presented in Lemma 2.5 is sufficient to compute a gradient efficiently.
However, this approach requires us to compute u′R and u′D at each step. A more efficient alternative is to
compute the gradient using the adjoints ρD ans ρR which have already been calculated. Consequently, the
only additional cost is integrating a function over the domain to obtain the gradient with respect to k.

Proof of 2.5. We decompose the derivative as

∂K(O1, k1)

∂k1
= Re

(∫
D
∇u′D · ∇(uD − uR)

)
−Re

(∫
D
∇u′R · ∇(uD − uR)

)
.

17



By integration by parts and the equation satisfied by ρ we have:∫
D
∇u′D · ∇(uD − uR) =

∫
D
−(u′D∆(uD − uR) +

∫
∂D

u′D∂n(uD − uR)

=

∫
D
−u′D(∆ρD + k2ρD) +

∫
∂D

u′D∂n(uD − uR)

= −
∫
D
ρD
(
∆u′D + k2u′D

)
+

∫
∂D

∂nu
′
DρD − ∂nρDu

′
D + u′D∂n(uD − uR)

= 2

∫
O1

ρDuDk1 +

∫
∂D

∂nu
′
DρD − ∂nρDu

′
D + u′D∂n(uD − uR).

Decomposing the boundary as ∂D = Γc ∪ Γm, we study the integral on each of the three parts. On Γm,
u′D = ρD = 0 and the integral is zero. On Γc, we write

∂nu
′
DρD − ∂nρDu

′
D + u′D∂n(uD − uR) = u′D(∂nρD − ikρD − ∂nρD) + ∂nu

′
DρD = ρD(∂nu

′
D − iku′D) = 0

so that the integral is also 0. Finally, we get
∫
D ∇u′D · ∇(uD − uR) = 2

∫
O1
ρDuDk1. Let us consider now the

second term. The first step is exactly the same and we get∫
D
∇u′R · ∇(uD − uR) = 2

∫
O1

ρRuRk1 +

∫
∂D

∂nu
′
RρR − ∂nρRu

′
R + u′R∂n(uD − uR).

On ∂D, the terms that we integrate become

∂nu
′
RρR − ∂nρRu

′
R + u′R∂n(uD − uR) = u′R(∂nρR − ikρR − ∂nρR) + ∂nu

′
RρR = ρR(∂nu

′
R − iku′R) = 0.

Finally, we get
∫
D ∇u′R · ∇(uD − uR) = 2

∫
O1
ρRuRk1. Combining the two terms together, and using the

equation satisfied by the derivatives on O, we find

∂K(O1, k1)

∂k1
= 2

∫
O1

(ρDuD − ρRuR)k1.

4.4 Proofs for the case with uncertainties
Proof of the expression of the expected value of the functional: proposition 2.6. The computation is done through
the Fubini theorem (all the quantities are L2 and positive) after developing the term and arranging them to
factor out the powers of Y . Indeed, let us keep in mind that E(Yi) = 0, E(YiYj) = δi,j , E(YiYjYkYl) = 1
when the indices pair up and is equal to E(Y 4) if they are all equal. Otherwise, it is 0.

E(EK(O1, k1)) =
1

2

∫
Ω

∫
D

∣∣∣∣∣
M∑

m=0

(∇uRm −∇uDm)Ym(ω)

∣∣∣∣∣
2

dx dP(ω)

=

∫
Ω

∫
D

( M∑
m=0

|∇uDm
−∇uRm

|2Ym(ω)2

+
∑

0≤m̸=l≤M

(∇uDl
−∇uRl

) · (∇uDm
−∇uRm

)Yl(ω)Ym(ω)

)
dx dP(ω)

=
1

2

∫
D

M∑
m=0

|∇uDm
−∇uRm

|2 dx.

We recognize the sum of M + 1 terms of the form
∫
D |∇uD −∇uR|2. Using the results of the deterministic

case (propositions 4.5 and 2.5), we deduce the desired formula.
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Proof of the expression of the variance of the functional: proposition 2.7. We proceed in the same way as in
the previous proof. The expression is more complex, but still entirely computable numerically.

E
(
EK(O, ω)2

)
=

1

4

∫
Ω

∫
D

∣∣∣∣∣
M∑

m=0

(∇uRm
−∇uDm

)Ym(ω)

∣∣∣∣∣
2

dx

2

dP(ω).

We use Fubini’s theorem and the particular case where Y ∼ N (0, 1): we use E(Ym) = 0, E(Y 3
m) = 0,

E(Y 4
m) = 3.

E
(
EK(O, ω)2

)
=

1

4

∫
Ω

∫
D
|∇d0|2 + 2Re

(
∇d0 ·

M∑
m=1

∇dmYm

)
+

∣∣∣∣∣
M∑

m=1

∇dmYm

∣∣∣∣∣
2
2

=
1

4

(∫
D
|∇d0|2

)2

+
1

2

(∫
D
|∇d0|2

)∫
Ω

∫
D

∣∣∣∣∣
M∑

m=1

∇dmYm

∣∣∣∣∣
2


+

∫
Ω

(∫
D

Re

(
∇d0 ·

M∑
m=1

∇dmYm

))2

+
1

4

∫
Ω

∫
D

∣∣∣∣∣
M∑

m=1

∇dmYm

∣∣∣∣∣
2
2

=
1

4

(∫
D
|∇d0|2

)2

+
1

2

(∫
D
|∇d0|2

)( M∑
m=1

∫
D
|∇dm|2

)

+

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))2

+Re

 ∑
1≤m<l≤M

(∫
D
∇dm∇dl

)2


+
3

4

M∑
m=1

(∫
D
|∇dm|2

)2

+
1

2

∑
1≤m<l≤M

(∫
D
|∇dm|2

)(∫
D
|∇dl|2

)
With the same notations, we have

EK(O1, k1)
2 =

1

4

(
M∑

m=0

∫
D
|∇dm|2

)2

=
1

4

M∑
m=0

(∫
D
|∇dm|2

)2

+
1

2

∑
1≤m<l≤M

(∫
D
|∇dm|2

)(∫
D
|∇dl|2

)
.

Thus,

V (EK(O, ω)) =
1

4

(∫
D
|∇d0|2

)2

+
1

2

(∫
D
|∇d0|2

)( M∑
m=1

∫
D
|∇dm|2

)

+

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))2

+Re

 ∑
1≤m<l≤M

(∫
D
∇dm∇dl

)2


+
1

2

M∑
m=1

(∫
D
|∇dm|2

)2

First, we denote u′Di
and u′Ri

the derivatives of the function O1 7→ uDi(O1) and O1 7→ uRi(O1) as computed
in the deterministic case. The expression becomes
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DO1
V ((O1, k1)) (θ) =

1

2

(∫
D
|∇d0|2

)
DO1

EK(O1, k1)(θ)+2

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))(∫
D
Re
(
∇d0 · ∇d′m

))
+ 2

∑
1≤m<l≤M

Re

(∫
D
∇dm∇dl

)
Re

(∫
D

∇dm∇d′l +∇d′m∇dl

)

+

M∑
m=1

(∫
D
|∇dm|2

)
Re

(∫
∂O1

(k21 − k22)pm,m(θ · n)
)
.

Finally, the expression takes the form

DO1V ((O1, k1)) (θ) = Re

(∫
∂O1

(k21 − k22)G(θ · n)
)
,

where

G =
1

2

(∫
D
|∇d0|2

) M∑
m=1

pm,m + 2

M∑
m=1

(∫
D
Re
(
∇d0 · ∇dm

))
p0,m

+ 4
∑

1≤m<l≤M

Re

(∫
D
∇dm∇dl

)
pm,l +

M∑
m=1

(∫
D
|∇dm|2

)
pm,m.

We proceed in the same way to derivate with respect to the wavenumber k.
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